NumPy 数组的维数称为秩(rank),秩就是轴的数量,即数组的维度,一维数组的秩为 1,二维数组的秩为 2,以此类推。
在 NumPy中,每一个线性的数组称为是一个轴(axis),也就是维度(dimensions)。比如说,二维数组相当于是两个一维数组,其中第一个一维数组中每个元素又是一个一维数组。所以一维数组就是 NumPy 中的轴(axis),第一个轴相当于是底层数组,第二个轴是底层数组里的数组。而轴的数量——秩,就是数组的维数。
很多时候可以声明 axis。axis=0,表示沿着第 0 轴进行操作,即对每一列进行操作;axis=1,表示沿着第1轴进行操作,即对每一行进行操作。
NumPy 的数组中比较重要 ndarray 对象属性有:
ndarray.ndim:秩,即轴的数量或维度的数量
ndarray.shape:数组的维度,对于矩阵,n 行 m 列
ndarray.size:数组元素的总个数,相当于 .shape 中 n*m 的值
ndarray.dtype:ndarray 对象的元素类型
ndarray.itemsize:ndarray 对象中每个元素的大小,以字节为单位
ndarray.flags:ndarray 对象的内存信息
ndarray.real:ndarray元素的实部
ndarray.imag:ndarray 元素的虚部
ndarray.data:包含实际数组元素的缓冲区,由于一般通过数组的索引获取元素,所以通常不需要使用这个属性。
ndarray.ndim
ndarray.ndim 用于返回数组的维数,等于秩。
实例如下图:
ndarray.shape
ndarray.shape 表示数组的维度,返回一个元组,这个元组的长度就是维度的数目,即 ndim 属性(秩)。比如,一个二维数组,其维度表示"行数"和"列数"。
ndarray.shape 也可以用于调整数组大小。NumPy 也提供了 reshape 函数来调整数组大小。实例如下图:
ndarray.itemsize
ndarray.itemsize 以字节的形式返回数组中每一个元素的大小。
例如,一个元素类型为 float64 的数组 itemsize 属性值为 8(float64 占用 64 个 bits,每个字节长度为 8,所以 64/8,占用 8 个字节),又如,一个元素类型为 complex32 的数组 item 属性为 4(32/8)。
ndarray.flags
ndarray.flags 返回 ndarray 对象的内存信息,包含以下属性:
C_CONTIGUOUS (C) :数据是在一个单一的C风格的连续段中
F_CONTIGUOUS (F):数据是在一个单一的Fortran风格的连续段中
OWNDATA (O):数组拥有它所使用的内存或从另一个对象中借用它
WRITEABLE (W):数据区域可以被写入,将该值设置为 False,则数据为只读
ALIGNED (A):数据和所有元素都适当地对齐到硬件上
UPDATEIFCOPY (U):这个数组是其它数组的一个副本,当这个数组被释放时,原数组的内容将被更新
评论